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A B S T R A C T

View factors for sky, trees, and buildings are three important parameters of the urban outdoor environment that
describe the geometrical relationship between different surfaces from the perspective of radiative energy
transfer. This study develops an approach for accurately estimating sky view factor (SVF), tree view factor (TVF),
and building view factor (BVF) of street canyons in the high-density urban environment of Hong Kong using
publicly available Google Street View (GSV) images and a deep-learning algorithm for extraction of street
features (sky, trees, and buildings). As a result, SVF, TVF, and BVF maps of street canyons are generated.
Verification using reference data of hemispheric photography from field surveys in compact high-rise and low-
rise areas shows that the GSV-based VF estimates have a satisfying agreement with the reference data (all with
R2 > 0.95), suggesting the effectiveness and high accuracy of the developed method. This is the first reported
use of hemispheric photography for direct verification in a GSV-based streetscape study. Furthermore, a com-
parison between GSV-based and 3D-GIS-based SVFs shows that the two SVF estimates are significantly correlated
(R2=0.40, p < 0.01) and show better agreement in high-density areas. However, the latter overestimates SVF
by 0.11 on average, and the differences between them are significantly correlated with street trees (R2=0.53):
the more street trees, the larger the difference. This suggests that a lack of street trees in a 3D-GIS model of street
environments is the dominant factor contributing to the large discrepancies between the two datasets.

1. Introduction

The urban thermal environment has practical implications for en-
ergy consumption, human comfort and productivity, air pollution at the
street level, and urban ecology [1,2]. It is influenced by the geometry of
street canyons, street trees, building blocks and impervious ground
covers [3]. Street view factors (VFs) for the sky, trees, and buildings are
three important parameters of urban outdoor environments. They de-
scribe the geometrical relation between different urban street compo-
nents from the perspective of radiative energy transfer that plays a key
role in urban thermal environments. Sky view factor (SVF), tree view
factor (TVF), and building view factor (BVF) are defined as the geo-
metric ratio of the amount of the sky, trees, and buildings seen, re-
spectively, from a given surface point to the overlying hemisphere

subtended by a horizontal surface [4,5]. A thorough quantification and
understanding of the physical streetscape using VFs, including its fea-
tures and dynamics, offers great utility to urban planners and clima-
tologists investigating the urban environment, its physical and social
interactions, and implications for human well-being.

SVF, a geometric quantification of the degree of sky visibility within
street canyons, is a commonly used indicator for describing urban
geometry. As an effective indicator of nocturnal urban radiation bal-
ance, SVF characterizes the ratio of received (or emitted) radiation by
an urban street to the total radiation emitted (or received) by the entire
hemispheric radiation environment [6]. Therefore, SVF is an important
geometrical parameter for the studies of urban microclimate [7,8],
nocturnal urban heat island (UHI) effect [9,10], urban thermal comfort
[7–11], and urban air pollution [12]. Street tree canopy, quantified by
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TVF, has instrumental ecological service functions such as UHI miti-
gation due to its contribution to reducing urban temperature [13–16].
The trees' cooling effect comes from tree shading, which reduces the
radiation reaching ground level [17,18], and evaporative cooling from
leaf surfaces [19]. In addition, urban street trees have been found to
absorb airborne pollution and therefore decrease road traffic emissions
[20] and improve the walkability of streets [21]. Therefore, the pro-
portion of street tree cover can be used to evaluate the benefits from
ecosystem service provisions in different areas of a city [22]. Many
urban materials for buildings have a relatively high heat capacity and
surface thermal admittance, which make them efficiently accept and
retain heat during daytime and release it at night, leading to a strong
UHI effect [23,24]. This study uses BVF to quantify the impact of
buildings on the urban radiative balance. These three VFs interact with
each other in balancing urban radiation. SVF is a combination factor of
buildings and trees that influences the air temperature [25]. Street trees
reduce SVF by providing shading to the environment, resulting in the
reduction of nighttime net longwave loss [26]. Buildings emit a greater
amount of longwave radiation compared to the cool sky and trees [27].
Therefore, urban street canyons with a higher BVF will yield a larger
net longwave radiation.

Methods for estimating VFs of urban street canyons can be grouped
into the following three types:

1) Photographic method. This method uses a fish-eye lens to take on-
site photographs that project the hemispheric environment onto a
circular plane. Different street features are then extracted from the
fisheye image to calculate the VFs. This method provides a direct

and accurate measurement of SVF [28,29]. However, taking on-site
fisheye images usually requires fieldwork that is time- and effort-
consuming. Therefore, this method is suitable only for small-scale
study;

2) Model simulation. This method can produce spatially continuous
VFs based on vectored buildings and rasterized digital 3D surface
models [30–33]. However, model data are difficult to accurately
generate and are therefore not always available. The accuracy of VF
estimations using model simulations depends heavily on the accu-
racy of the model in simulating the street environment. However,
the street environment can be very complex, such as those in the
high-density urban areas of Hong Kong. In particular, the street tree
canopy, a major component of streetscapes, is hard to parameterize
in models;

3) Street-sensing method based on street-view panoramas. This re-
cently proposed concept uses publicly and freely accessible street
panoramic photographs, e.g. Google Street View (GSV) images, to
derive VFs of street canyons by projecting the panorama into fisheye
images [34–37]. Since GSV images directly capture urban streets-
cape and are available in many cities all over the world, this method
provides a low cost and effective streetscape mapping approach for
urban studies.

Li et al. [34] showed two examples demonstrating the usage of GSV
images in mapping street tree and openness, while Liang et al. [35]
provided a proof-of-concept study to show the reliability of using street
panorama images in estimating SVF. Carrasco-Hernandez et al. (2015)
proposed using the GSV images to calculate the street-level total

Nomenclature

Symbols and abbreviations

3D-GIS Three-dimension geographic information system
API Application programming interface
BVF Building view factor
CNN Convolutional neural network
DSM Digital surface model
FCN Fully convolutional network
GSV Google Street View
H/W Building-height-to-street-width
PSPNet Pyramid scene parsing network
RMSE Root-mean-square error
SVF Sky view factor

TVF Tree view factor
UHI Urban heat island
URL Uniform resource locator
VF View factor
x y,p p Coordinates of the cylindrical panorama
x y,f f Coordinates of the fisheye image
C C,x y Coordinates of the center pixel on the fisheye image
Hp Height of the panorama image

Wp Width of the panorama image
R2 Coefficient of determination
αi x, Angular width of pixels of feature x (x can be sky, tree, or

building) in the i th ring
Ψx View factor for sky, tree, and building when x is specified
r0 Radius of the fisheye image

Fig. 1. An example of the deep street canyon in the Mong Kok area (shown in Fig. 2), one of the typical high-density high-rise urban areas of Hong Kong. (Source: GSV, 2016).
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shortwave irradiance based on urban canyon geometries estimated
from an open-source panorama generating tool [36]. Middel et al.
(2017) used GSV-estimated SVF to verify the synthetic hemispherical
fisheye photos at fine spatial resolution generated from a developed
web-based tool using Google Earth 3D data for urban areas [37].

However, the previous study areas mainly focus on the cities where
streetscape features are relatively simple (compared to high-density
urban areas of Hong Kong in this paper) with well-defined building and
street structures. The feasibility and uncertainty of using GSV for esti-
mating SVF in such high-density context, are still not clear. Hong Kong,
located in monsoon Asia, has a high-rise, high-density, and compact
urban morphology with high building-height-to-street-width (H/W)
ratio [38]. A typical street in high-density urban areas of Hong Kong is
characterized by high-rise buildings, narrow compacted streets, inter-
ferences of heavy travel volume and pedestrian flow, and complex
streetscapes with the amount of colorful overhanging signboards that
block sunlight and air paths and provide limited openness to the sky
(see Fig. 1). An effective and accurate method for mapping the VFs of
the street canyons in Hong Kong is therefore crucial for studying its
urban climate and assessing the relevant outdoor thermal comfort.

The purpose of this study is to develop an approach for estimating
and mapping SVF, TVF, and BVF of street canyons in complex urban
living environments, such as the high-density urban areas of Hong
Kong. The approach is based on GSV images and a deep-learning
technique for street feature extraction and is verified using hemispheric
photography measurements as reference data from fieldwork. This
verification is, to our knowledge, the first reported use of hemispheric
photography for direct verification of GSV-based streetscape study. The
developed approach represents a ground-based perspective of city
streetscapes that cover complicated urban contexts, including tree ca-
nopy cover, building overhangs, and shade structures. A comparison
with conventional 3D modeling of SVF, which has been widely used in
previous studies, is also conducted to assess the uncertainty and ad-
vantages of this GSV-based mapping approach.

2. Methods

2.1. Study area

Hong Kong, situated on the coastline of southeastern China (see
Fig. 2), is one of the most densely-populated and built-up cities in the
world. It has a population of over seven million living in around
262 km2 of developed land [39,40]. The climate of Hong Kong is sub-
tropical maritime, which features hot and humid summers and warm
winters [41]. Moreover, high-density urban areas of Hong Kong are
characterized by high-rise compact building blocks and deep street
canyons with a high H/W ratio. In these areas, tall buildings of some
40-60 stories lining narrow streets of 15–25m width have been the
norm. Serious issues related to human thermal comfort [42], air pol-
lution [43] and the UHI effect [44] due to its climate and urban
morphologies have been primary planning concerns. As effective in-
dicators for characterizing urban streetscapes, street VFs have been
widely incorporated in modeling to address these concerns. However,
an assessment of the accuracy of VF estimations, which is crucial for
quantifying the uncertainty of models, is still lacking due to a lack of
measurements.

In this study, high-density urban regions of Kowloon and Hong Kong
Island are chosen as our study area, as shown in Fig. 2. This area is one
of the most densely built and populated areas in the world, with a mean
building height of 27 m, a standard deviation of 30.7m, and a popu-
lation density of around 42,900 persons per km2. As shown in Fig. 2 (c),
the building heights are grouped into high-rise (> 25m), mid-rise
(15–25m) and low-rise (< 15m), according to local climate zone
classification in Hong Kong urban areas [45,46]. Most high-rise build-
ings are distributed in southern Kowloon and northern Hong Kong Is-
land.

2.2. GSV-based SVF, TVF and BVF estimates

In this study, we use publicly accessible GSV images to estimate the
SVF, TVF, and BVF of street canyons in high-density urban areas of
Hong Kong. Street panorama images sampled at 30m intervals are first

Fig. 2. (a) Location of Hong Kong (yellow circle) in south-eastern China; (b) High-density urban areas in Hong Kong, as outlined in yellow, including Kowloon and northern Hong Kong
Island; (c) Building density map, including distribution and height, overlaid with streets in grey. The building and street data are extracted from the B5000 maps series by the Hong Kong
Lands Department. The dotted red and blue rectangles outline the field survey regions for high-rise and low-rise regions, respectively, as described in Section 3.3. The black star is the
location of the street canyon example in Mong Kok shown in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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collected using the GSV API [47,48] based on the latitudes and long-
itudes of the sampling points. Extraction of features, including sky,
trees, and buildings, is implemented using the scene parsing method in
a deep-learning framework [49,50]. We then project the panorama
images from cylindrical to azimuthal projection to generate the fisheye
images. From the fisheye images, VFs are calculated by applying the
classical photographic method [4]. Fig. 3 shows the workflow proce-
dure for VF calculations using this method, and a detailed description is
as follows.

2.2.1. Collecting GSV panorama images
We sampled points at 30m intervals along the street lines shown in

Fig. 2 (c), using GIS software. There is a total of 33,544 sample points in
the study area. We collected the GSV panorama images for all the
sampled points in the following ways:

(1) Obtain panorama image ID at a specific location using the following
URL:

https://maps.googleapis.com/maps/api/streetview/metadata?
size=400x400&location=LAT,LON&heading=HEADING&fov=FOV&
pitch=PITCH&key=APIKey

where LAT and LON are the latitude and longitude, respectively,
FOV (90 by default) determines the horizontal field of view of the
image, HEADING (0 by default) indicates the compass heading of the
camera, PITCH (0 by default) specifies the up or down angle of the
camera relative to the street view vehicle, and API key is the credential
required to authenticate the request.

(2) Download tiles of a panorama image using the following URL:

http://cbk0.google.com/cbk?output=tile&panoid=PANO_ID&
zoom=5&x=I&y=J

where PANO_ID is obtained from the above step; and I (from 0 to
25) and J (from 0 to 12) are the rows and column indices of the image
tile. We can get a complete panorama image by combining 26×13
tiles. Invalid GSV images, including those with empty content, are

filtered out. Examples of GSV images in high-rise and low-rise areas are
shown in Fig. 3 (a).

2.2.2. Extractions of street features using deep-learning techniques
We propose the use of the scene parsing method in a deep-learning

framework to extract street features, including sky, trees, and buildings,
from the GSV images. The deep-learning model employed in this study
is the Pyramid Scene Parsing Network (PSPNet) [49]. In essence, scene
parsing segments and parses an image into different image regions as-
sociated with semantic categories, including sky, trees, and buildings.

Deep learning based on the deep convolutional neural network
(CNN) allows computational models that are composed of multiple
processing layers to learn representations of natural data with multiple
levels of abstraction and has been widely used in image classification
and pattern recognition [51]. Enabled by the proliferation of deep-
learning techniques, a number of CNN-based models for semantic scene
parsing, such as understanding street features, have been proposed and
have achieved outstanding performance [52–54]. Compared with pre-
vious work, the architecture of PSPNet pays more attention to feature
ensembling and structure prediction, to integrate global context in-
formation into the prediction process. The PSPNet model employed in
this study provides a fully convolutional network (FCN)-based pixel
prediction framework that is superior for processing difficult scenery
context features. It is a practical system for state-of-the-art scene par-
sing and semantic segmentation where all crucial implementation de-
tails are included [49]. PSPNet uses a pre-trained semantic segmenta-
tion network based on the ADE20K dataset. When evaluating prediction
accuracies on various datasets, it achieves state-of-the-art performance
and outperforms many other models in the semantic scene parsing
framework. In particular, it achieves a high accuracy of 80.2% in pre-
dicting 150 object classes of cityscapes, a dataset for semantic urban
scene understanding collected from 50 cities in different seasons.

Fig. 4 shows the workflow of semantic scene parsing using PSPNet.
The downloaded and combined GSV panorama image is first resampled
into ×473 946 pixels. The panorama image is then separated into two
images with ×473 473 pixels, a size required by the deep-learning
module, before consecutively inputting the two images into the PSPNet,

Fig. 3. Workflow procedure for VF calculations
using GSV images, illustrated by taking two ex-
amples from high-rise and low-rise areas. (a)
Panorama images downloaded from Google ser-
vers using coordinates of sampling street points as
inputs. (b) Extraction of sky (in blue), trees (in
green), and buildings (in grey) using the scene
parsing deep-learning technique [49]. (c) Fisheye
images obtained by projecting the panorama
images from cylindrical projection to azimuthal
projection. Based on the fisheye image of ex-
tracted features, SVF, TVF, and BVF are calcu-
lated using the classical photographic method
developed by Johnson and Watson [4]. The re-
sulted VF estimates are also indicated. (For in-
terpretation of the references to color in this
figure legend, the reader is referred to the Web
version of this article.)
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as shown in Fig. 4 (a). PSPNet uses CNN to get the feature map of the
last convolutional layer as shown in Fig. 4 (b). A pyramid parsing
module is applied to harvest different sub-region representations of the
image, followed by up-sampling and concatenation layers to form the
final feature representation of the streetscape, which carries both local
and global context information, as illustrated in Fig. 4 (c). It fuses
features under four different pyramid scales with bin sizes of ×1 1,

×2 2, ×3 3, and ×6 6, respectively. Finally, the representation is fed
into a convolution layer to get the final per-pixel prediction and pro-
duce a pixel-wise classified street view image with semantic categories
in Fig. 4 (d). The size of output images is also ×473 473 pixels, includes
150 classifications, and features of the sky, trees, and buildings are
extracted and calculated in this study. Using a workstation with an
eight-core CPU and an NVIDIA 1080Ti GPU (12G RAM), it took about
20 h to finish the 33,544 images, roughly two seconds per panorama
image. TVF is general definition vegetation, including grass and trees.
Based on the calculation results of 33,544 GSV images using deep
learning, values of both SVF and TVF that are zero will be filtered, as
these points are distributed indoors or in tunnels after checking the
original GSV images. The study uses the filtered 29,264 GSV images for
further analysis. Examples of the extracted features are shown in Fig. 3
(b).

2.2.3. Projection into fisheye images and calculations of VFs

(1) Projection into fisheye images

We use the photographic method, which applies a fisheye lens to the
panorama image, in order to project the hemispheric environment
(cylindrical projection) onto a circular plane (azimuthal projection) and
generate the fisheye image in the following way [34]. This projection is
implemented by constructing a relationship between pixels (xf , yf ) on a
fisheye image and (xp, yp) on a panorama image, given by,
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where Wp and Hp are the width and height of the panorama image,
respectively; =r W π/2p0 is the radius of the fisheye image; and C C( , )x y
are the coordinates of the center pixel on the fisheye image;

= =C C W π/2x y p . First, an empty fisheye image is initialized with co-
ordinates x( f , y )f . By using equations (1) and (2), each pixel with co-
ordinate of (xf , yf ) is then uniquely connected to a pixel with coordinate
of x( p, y )p in the panorama image. Lastly, the pixel value in x( f , y )f can
be assigned by that in x( p, y )p and this process is repeated for each pixel

until the fisheye image is fully constructed.

(2) Calculations of VFs

To calculate VFs with the following Equation (3) based on Johnson
and Watson [4], we divide the fisheye image into a number of con-
centric annuli of equal width, and then sum up all the annular sections
representing the sky, trees, and buildings to calculate the SVF, TVF and
BVF, respectively, using the following formula:
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2
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i
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i x
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where x can be sky, tree, or building; n is the total number of rings (here
we use 100); i (from 1 to 100) is the index of the ring; ai x, is the angular
width of pixels of feature x (x can be sky, tree, or building) in the i th
ring. Examples of the generated fisheye images are shown in Fig. 3 (c).
The SVF, TVF, and BVF quantify the fractions of sky, trees, and build-
ings, respectively, of the built environment seen from a particular ob-
servation point on the ground within the built environment.

2.2.4. Accuracy assessment of feature extraction from GSV images by deep-
learning technique

To assess the accuracy of the scene parsing deep-learning technique
in extracting street scenes, especially for the VFs of the sky, trees, and
buildings, the focus of this study, we randomly select 100 sampled
street points and collect their corresponding GSV images. The 100 se-
lected samples are randomly distributed in the study area and cover
low-to-high building densities (see Fig. A.1), indicating these samples
represent different characteristics of street canyons and street trees.
Manual delineation of the images by eye inspection is implemented to
extract the sky feature to generate a reference dataset (as truth). As a
result, Fig. 5 shows the comparison of calculated VFs from GSV images
based on the deep-learning technique and the generated reference data.
The two datasets nearly exactly agree with each other, with R2 as high
as 0.974 and RMSE of 0.036 for SVF, R2 of 0.986 and RMSE of 0.025 for
TVF, and R2 of 0.983 and RMSE of 0.037 for BVF. This agreement
suggests that the scene parsing deep-learning technique is able to ac-
curately extract the street-level features in high-density urban areas of
Hong Kong.

2.3. 3D-GIS-based SVF estimates

The high-resolution 3D-GIS-based SVF estimate of Hong Kong was
developed by Chen et al. (2012) [32] to study Hong Kong's urban mi-
croclimate. The 3D-GIS Model is generated in a geographic information
system (GIS) by using a 3D building database (with building height
information) merged with the topography database to create a digital
elevation layer representing the height of the urban surface in Hong

Fig. 4. Workflow of semantic scene parsing using PSPNet. For a given input street view image in (a), the network extracts the feature map in (b), and then the pyramid parsing module is
applied to form the final feature representation of the streetscape in (c). Finally, a pixel-wise classified output street view image with semantic categories in (d) is produced by feeding the
feature representation into a convolution layer.
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Kong. Both 3D building and topography databases are provided by the
Hong Kong Planning Department. Continuous SVF values at 2 m re-
solution are calculated for an entire urban environment. The SVF is
calculated by first constructing a fisheye image and then estimating the
SVF value using Equation (3) based on Johnson and Watson [4], the
same method used with GSV images as described in Section 2.2.

In this study, SVF estimates from the 3D-GIS model are compared
with those from GSV, as described in Section 3.3, for the purpose of
assessing the accuracy of urban 3D-GIS model in simulating urban
street environments under high-density contexts. This comparison is
important because: (1) 3D-GIS models have been widely used to esti-
mate the street geometric structures, including SVF, but a comprehen-
sive verification in a wide region is not possible because conventional

verification methods are both time and effort consuming [32]; (2) the
GSV-based method makes it possible to map the SVF at street level
across the whole city, and therefore, as this study shows, a compre-
hensive verification of the 3D-GIS model can be conducted. The un-
derstanding of the discrepancies between GSV-based and 3D-GIS-based
SVF estimates sheds light on future improvement in the model simu-
lation of complex urban environments.

3. Results

3.1. Mapping SVF, TVF, and BVF of street canyons using GSV images

Fig. 6 shows the spatial distributions of GSV-based SVF, TVF, and
BVF estimates in high-density urban areas in Kowloon and Hong Kong
Island, and a comparison of their frequency distributions. The mean
SVF, TVF, and BVF values in high-density areas of Hong Kong are 0.49,
0.14, and 0.33, respectively, and there are small differences between
Kowloon area (0.53, 0.12, and 0.41) and Hong Kong Island (0.41, 0.19,
and 0.36). The SVF value ranges from near 0, indicating little sky
openness, to 1.0, indicating total sky openness. In general, we found the
spatial patterns of VF estimates are similar and consistent with the
corresponding building height and density (see Fig. 2 (c)). Areas with
higher density have lower SVF, lower TVF and higher BVF, and vice
versa. The high-density residential areas, located in southern and
western Kowloon and northern Hong Kong Island, which cover about
58% of the study area, are dominated by low and moderate SVF
(0.2–0.6), and low TVF (0.0–0.3), because of the high-density con-
struction and narrow streets that block sky visibility and limit space for
greenery. The coastline regions and low-rise areas, which cover about
20% of the study area, show much higher SVF (0.7–1.0), and lower BVF
(0.0–0.3), because of fewer buildings and more sky openness.

In low-rise regions near country parks in the southern part of the
study area in Hong Kong Island where BVF is low (e.g., the dotted
rectangles in Fig. 6), the SVF values, however, are in a much lower
range (0.0–0.2; Fig. 6 (c)). The much lower sky openness, as we discuss
later, is mainly due to high tree cover in this area (Fig. 6 (b)), which
blocks much of the sky visibility. Further analysis of the impact of tree
cover is described in Section 3.4. Fig. 6 (d) shows the frequency

Fig. 5. Accuracy assessment of feature extraction using the PSPNet in a deep-learning
framework to calculate SVF, TVF, and BVF from GSV images in high-density urban areas
of Hong Kong. The R2 and RMSE between the two datasets of VFs are also indicated.

Fig. 6. Maps of GSV-based SVF in (a), TVF in
(b), and BVF in (c) of street canyons in high-
density urban areas of Hong Kong derived from
29,264 GSV images along streets at 30m in-
tervals; (d) Frequency density of SVF (blue
bar), TVF (green bar), and BVF (grey bar). (For
interpretation of the references to color in this
figure legend, the reader is referred to the Web
version of this article.)
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distribution of the VFs in Hong Kong. The TVF in the high building
density area is dominated by values less than 0.1 and the mean value is
0.143. The low TVF is mainly limited by the high building density and
narrow streets. This mean TVF is smaller compared with Singapore
(0.293), a sub-tropical Asian city with high building and population
densities, and is similar to New York (0.135), a typical high-density city
in the United States [55]. SVF, on the other hand, is close to an even
distribution between 0.2 and 0.9, with a peak between 0.4 and 0.5,
while BVF has a decreasing frequency when its value increases.

3.2. Verification of GSV-based VF estimates

The comparison of VF estimates and direct measurements using
hemispherical photography is a convincing way to verify the effec-
tiveness and assess the uncertainties associated with GSV-based and 3D-
GIS-based methods for estimating VFs of street canyons. Here we use
fisheye lens hemispheric photography to verify the applicability of GSV-
based and 3D-GIS-based methods in high-density urban areas of Hong
Kong. This is, to our knowledge, the first reported use of hemispheric
photography for direct verification of a GSV-based streetscape study.

Forty photographs were taken at 40 selected sample points (20 in
the high-rise area of Mong Kok and 20 in the low-rise area of Kowloon
Tong) in Kowloon, as shown in Fig. 2 (c). The photographs were taken
at 1.5 m above ground level, using a digital camera, Nikon FM601, with
an 8-mm circular lens. Fig. 7 shows four examples of photographs taken
with a fisheye lens in our field survey (a) and the collocated projected
GSV fisheye images (b). The feature extraction results and the corre-
sponding VF estimates are also shown. The field survey results are
consistent with GSV-based estimates, with differences within 0.03,
suggesting the effectiveness and high accuracy of using GSV images in
estimating VFs in high-density urban areas of Hong Kong.

Fig. 8 illustrates the comparisons of survey-based reference VF data
and GSV-based and 3D-GIS-based VF estimates. The GSV-based method
we propose to use in high-density urban areas of Hong Kong performs
much better in estimating SVF (Fig. 8 (a)) than the commonly used 3D-
GIS-based method, with higher R2 (0.954 versus 0.014) and lower
RMSE (0.033 versus 0.263). In particular, 3D-GIS has higher R2 in high-

rise areas than in low-rise building areas, indicating that model simu-
lation performs better in high-rise building areas. Moreover, for GSV-
based estimates, R2 and RMSE for TVF (Fig. 8 (b)) are 0.987 and 0.027,
respectively, and for BVF (Fig. 8 (c)) they are 0.986 and 0.036, re-
spectively. These results suggest that a GSV-based streetscape study is
effective and accurate in high-density urban areas of Hong Kong,
characterized by compact high-rise areas with complicated street en-
vironments and by low-rise areas with dense tree canopy.

3.3. Comparison between GSV-based and 3D-GIS-based SVF estimates

In this section, the collocated SVF estimates at 30m intervals de-
rived from GSV and 3D-GIS Model are compared for the purpose of
assessing the accuracy of urban 3D-GIS model in simulating the urban
street environment in high-density contexts. Fig. 9 (a) illustrates the
spatial distribution of 3D-GIS-based SVF estimates at 30m intervals in
high-density areas of Hong Kong, corresponding to the sampling points
in Fig. 6 (a). The map of 3D-GIS-based SVF shows a similar pattern to
that of GSV-based SVF estimates, in which the lower SVF values are
located mainly in areas with high-rise buildings and higher SVF values
located in low-rise or coastal areas. The mean SVF value of 3D-GIS-
based estimates (0.59) is about 0.11 (about 20%) higher than that of
GSV-based estimates (0.49) but with the similar standard deviation
(0.234 and 0.225, respectively). However, there are large differences in
the low-rise areas with large quantities of street trees. To investigate the
spatial difference, Fig. 9 (b) shows the spatial distribution of the dif-
ference between 3D-GIS-based and GSV-based SVF estimates (former
minus latter). The two datasets have a better agreement in high-rise
regions (difference less than 0.1) than the regions with lower building
rise (difference larger than 0.1). This characteristic of difference can
also be seen from the bivariate histogram in Fig. 9 (c), which shows that
(1) GSV-based and 3D-GIS-based SVF estimates have good agreement
(the highest data number density can be seen in the diagonal direction)
in high-rise regions with small SVF between 0.2 and 0.4. Out of all the
sampling points, 43.85% of them have a difference larger than 0.1; (2)
some 3D-GIS-based values are higher than GSV-based values, sug-
gesting model simulations overestimate the SVF in some regions.

Fig. 7. Examples of fisheye images from two
high-rise and two low-rise street sample points
from field surveys in (a), and GSV-based method
in (b). Image features are classified into the sky
(in blue), trees (in green), and buildings (in grey)
using the scene parsing deep-learning technique,
as shown in (c). SVF, TVF, and BVF values from
field surveys and GSV are shown as indicated.
(For interpretation of the references to color in
this figure legend, the reader is referred to the
Web version of this article.)
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According to the descriptive statistics of the 29,264 sample points from
this comparison, the R2 between them is 0.40 with RMSE of 0.22. This
overestimation of SVF by the 3D-GIS-based method can also be seen in
the histogram plots in Fig. 9 (d), which shows that the 3D-GIS-based
method has shifted the peak of the frequency distribution of SVF from
less than 0.5 to larger than 0.5. As a result, the mean SVFs are different
by 0.11. The contributors to this pattern of difference are investigated
in Section 3.4.

3.4. Impacts of street tree canopy and building density on SVF estimates

To gain further understanding of the discrepancies between GSV-
based and 3D-GIS-based SVF estimates and shed light on future im-
provements in the model simulation of the urban environment, we in-
vestigate the impacts of the street tree canopy, quantified using the TVF
estimate, and building density, quantified using the BVF estimate, on
the discrepancies shown in Fig. 9.

The bivariate histogram of GSV-based TVF and the difference be-
tween GSV-based and 3D-GIS-based SVF estimates is presented in
Fig. 10 (a). We can see that (1) a large majority of the data has small
differences (close to 0) and low TVF (smaller than 0.2) and (2) there is a
strong positive correlation between TVF and the difference. When TVF
is larger than 0.1, R2 of the two datasets is 0.53 (p < 0.01), indicating
a significant correlation. This result indicates that a higher number of

street trees leads to a larger difference between estimations of SVF from
GSV images and 3D-GIS simulation, especially when the TVF is larger
than 0.1. The result from linear regression shows that the increase of
the difference follows the increase of TVF by a factor of 1.17. This
strong correlation suggests that TVF, an indicator of the number of
street trees, makes the dominant contribution to the discrepancies be-
tween GSV-based and 3D-GIS-based SVF estimates. This is because
model simulations cannot parameterize street trees well due to their
complexity, leading to underrepresentation of model simulations of
realistic street environments. Therefore, in general, the 3D-GIS-based
method produces larger sky openness and overestimate the SVF of
street canyons in high-density urban areas in Hong Kong. This result
differs from the study [35] in the less dense Cardiff, UK, which indicates
no significant correction between the difference in SVF estimates and
street trees.

Fig. 10 (b) illustrates the bivariate histogram of GSV-based BVF, an
indicator of building density, and the difference between the two SVF
estimates. We can see that (1) most data differ between −0.1 and 0.1
and correspond to a wide range of BVFs from 0 to 0.9, and (2) when
BVF is large, that is when building density is relatively large, the dif-
ference is centered at 0 with a small variation range, indicating good
performances of model simulations in high-rise areas of Hong Kong. On
the other hand, when BVF is small, the difference tends to be positive,
indicating that the 3D-GIS-based SVF estimate is higher than the GSV-

Fig. 8. (a) Scatter plot of SVF reference data from field survey and the corresponding GSV-based (in blue) and 3D-GIS-based (in red) SVF estimates. Sampling SVF data include 20 samples
in Mong Kok within high-rise building area (in triangles), and 20 samples in Kowloon Tong within low-rise building area (in circles); (b) the same as (a) but for TVF; (c) the same as (a)
but for BVF. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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based estimate in lower density regions. Especially when BVF is close to
0, that is in the urban areas with very low building density, the dif-
ferences can be very large, probably mainly due to the impact of trees,
as shown in Fig. 10 (a). This figure shows that the lower the building
density, the greater the difference. Combined with the effect of street
trees on SVF values in Fig. 10 (a), our study shows that the larger
amounts of street trees are associated with a higher uncertainty of
modeled SVF. On the other hand, the higher the building density, the
smaller the uncertainty.

4. Discussion

4.1. High-accuracy VF estimates for better modeling of urban thermal
environment

The climate of Hong Kong during hot and humid summer causes
thermal discomfort and decreases the quality of living, and both effects
are intensified by the UHI effect in heavily built-up areas. Serious issues
related to human thermal comfort [56], air pollution [57,58] and the
UHI effect [59,60] due to its climate and urban morphologies have been
primary planning concerns in Hong Kong. The urban radiation balance
and thermal environment are crucially affected by the geometry and
structures of street canyons [61]. There is a pressing need for high-
accuracy estimates of SVF, TVF, and BVF, which are effective indicators

of the geometry and structures of street canyons.
This study proposes the use of publicly available GSV panorama

images and a deep-learning technique to estimate the SVF, TVF, and
BVF of street canyons in high-density urban areas of Hong Kong. From
the verification results against reference data (as truth), the GSV-based
VFs show a satisfying agreement (with all R2 values larger than 0.95)
with the reference data. This result indicates the high accuracy of es-
timating VFs using GSV images and the deep-learning technique. These
high-accuracy estimates will improve the calculation of urban thermal
radiation in modeling the street canyon thermal environment in Hong
Kong. Moreover, the GSV-based method developed is capable of pro-
viding more detailed VF estimates at various scales from a small site to
an entire city. Since GSV images are available in many cities all over the
world, this method provides a low-cost and effective approach to sup-
port global studies of urban thermal environments.

4.2. Large uncertainty in model-based SVF estimates from street trees

With the availability of 3D-GIS models for urban areas, the SVF can
be continuously estimated at large spatial scales by simulating and
calculating the projection of building blocks from any point on the
ground. However, due to its complexity in shape and structure, street
tree canopy information, a major feature of urban settings, is usually
very difficult to parameterize and incorporate in models. As our study

Fig. 9. (a) Map of 3D-GIS-based SVF estimate with the same street sampling points as Fig. 6 (a); (b) Map of the difference between GSV-based and 3D-GIS-based SVF estimates; (c)
Bivariate histogram of GSV-based and 3D-GIS-based SVF estimates of street canyon in high-density urban areas of Hong Kong as shown in Figs. 6 (a) and 9 (a), respectively. To make the
histogram, the SVF data from both datasets are grouped into 0.01×0.01 grids and the value of a grid is the total number of SVF samples that fall in this grid; (d) Comparison of frequency
density histogram from GSV-based and 3D-GIS-based SVF estimates.
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shows, the 3D-GIS-based method captures well the spatial pattern and
variability of SVF in high-density urban areas of Hong Kong. However,
it overestimates SVF by 0.11 on average. Moreover, our results show
that as TVF increases by one unit, the resulting SVF error from the 3D-
GIS-based method decreases by 1.17 unit, suggesting a significant
correlation (R2= 0.53; p < 0.01) between street trees and the errors
in model simulations. This result suggests that a lack of street trees is
the dominant factor contributing to the large uncertainties in model
simulations of urban street geometry. On the other hand, based on the
linkage between street trees and the difference between 3D-GIS-based
and GSV-based SVF estimates, the shade provision of street trees in
urban street canyons can be estimated using GSV images [34]. Street-
level imagery allowed us to consider obstructions along street canyons
without relying on simplifications or simulations of the environment.

4.3. Temporal variation of street-level VFs

Hong Kong is located in a subtropical monsoon region with little
effect of seasonality on the variation of the street tree canopy. A specific
assumption on the seasonality is that the leaf cover of street trees does
not change during different seasons even though the acquisition time of
GSV images differs (see Fig. A.2). This is a reasonable assumption since
Hong Kong is located in the subtropical monsoon region where the
street trees can be maintained throughout the year [62]. Moreover,
Hong Kong is a highly developed high-density city where the built-up
areas are limited and therefore very little change has taken place during
recent years [40] that will significantly affect the street skylines.

However, for temperate climate regions, the seasonality of TVF will
be a big issue, given that the street trees will be in an annual cycle of
greening during growing seasons, and turning yellow and falling during
the autumn and winter seasons. The change in color of tree leaves poses
a challenge for VF studies using conventional tree detection method
based on the traditional spectral (RGB) information. The developed
deep-learning method in this study, on the other hand, extracts street
features based on local and global context information independent of
spectral information. Therefore, it has an advantage over the traditional
pixel-based spectral method. The developed method in this study can be
used to address the problem of VF seasonality by first training the deep-
learning module with tree image samples from different seasons and
then applying it to GSV images grouped into different seasons (see Fig.
A.2(b)).

4.4. Limitations and future studies

The GSV-based method is applicable only in areas with GSV images
for mapping streetscape variables, including SVF, BVF, and TVF. In
areas without GSV data, such as the areas on Hong Kong Island, the 3D-
GIS-based method or DSM-based method is still effective. The conclu-
sions from studying the impact of street trees and building density on
the uncertainty of the 3D-GIS-based method contribute to the future
improvement of modeling the urban street environment. In this study,
we use a 30m interval for calculating VFs, assuming that this resolution
would suffice to resolve the variation of VFs within a street. However,
the GSV-based method is flexible in using any interval for mapping VFs
of street canyons for study areas with different spatial scales.

GSV images may have the potential to investigate the symmetric
and asymmetric characters of street canyons [63,64] with the following
extra inputs and assumption, including the exact location of the ob-
server, the width of the street which enables accurately calculating the
observer position relative to both sides of the street, and assuming
street trees don't block buildings on both sides. In this way, the height
of buildings on both site along the street can be calculated and the
asymmetric characters of street canyons may be determined.

In addition, sun view factor which is relevant to daytime shortwave
irradiance can also be estimated by constructing geometries and or-
ientations of street canyons using GSV images [36]. The estimation
involves the projection of the sun trajectory on the GSV fisheye image
and then the calculation of the fraction of the length of solar trajectory
within the sky view range when sunlight can be seen. The quantifica-
tion of street sun view factor compares the number of points of a sun
path not blocked by obstacles with the total amount of points in the sun
path in GSV images. It is critical for quantifying the sun-exposure of the
solid surfaces, which is needed to resolve the heterogeneity in urban
areas for estimating thermal comfort more accurately.

5. Conclusions

This study focuses on (1) developing an approach for accurately
deriving VFs for the sky, trees, and buildings of street canyons in the
high-density urban environment of Hong Kong using publicly available
GSV images and a deep-learning feature extraction algorithm; (2) ver-
ifying the accuracy of the developed GSV-based method using reference
data of hemispheric photography from field surveys; and (3) comparing
the GSV-based and 3D-GIS-based VF estimates and investigating the
impact factors for the discrepancies between them. As a result, maps of
SVF, TVF, and BVF of street canyons in high-density urban areas of
Hong Kong are generated. The mean SVF, TVF, and BVF values in high-
density areas of Hong Kong are 0.49, 0.14, and 0.33, respectively. The
following conclusions can be drawn:

• The spatial patterns of VF estimates are similar and consistent with
the corresponding building height and density. The TVF is domi-
nated by values less than 0.1, which is limited by the high building

Fig. 10. (a) Bivariate histogram of GSV-based TVF and the difference between 3D-GIS-
based and GSV-based SVFs (former minus latter). As indicated, when TVF>0.1, the R2 is
0.53 and the best fit linear slope is 1.17 (in dotted black line); (b) Bivariate histogram of
GSV-based BVF and the difference between 3D-GIS-based and GSV-based SVFs (former
minus latter). To derive the histogram, the data from both datasets are grouped into 0.01
× 0.01 grids and the value for each grid is the total number of SVF samples that fall in the
grid.
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density and narrow street environment.

• Verification using reference data by hemispheric photography from
field surveys shows that the GSV-based VF estimates have a sa-
tisfying agreement (with all R2 values larger than 0.95) with the
reference data. It suggests the effectiveness and high accuracy of the
GSV-based method.

• A comparison between GSV-based and 3D-GIS-based SVFs show that
the two SVF estimates are correlated (with R2 of 0.40) and have a
better agreement in high-building-density areas. However, the 3D-
GIS-based method overestimates SVF by 0.11 on average.

• The differences between the two methods are significantly corre-
lated with street trees (R2= 0.53). The more street trees, the larger
the difference (by a factor of 1.17). This suggests that a lack of street
trees in a 3D-GIS model of a street environment is the dominant
factor contributing to the large discrepancies between the two da-
tasets. This study demonstrates an effective and accurate approach
for mapping SVF in high-density areas of Hong Kong and suggests

that street trees should be considered in model simulations of urban
street environments.

The developed method for analyzing VFs in a 3D street environment
will play an important role in relating science-based evidence for urban
climatic studies and decision-making in urban planning and design
processes.
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Appendix A

A.1. Spatial distribution of the 100 random samples

Fig. A.1. Spatial distribution of the 100 randomly selected samples in the study area for verification described in Section 2.2.4. The sampling is implemented by generating 100 random
integers using a pseudorandom integer generator in MATLAB to extract data from the total 29,264 street data points.

A.2. Acquisition time of GSV images

Fig. A.2 shows the spatial distribution of the acquisition time of all the 22,729 GSV images collected in the high-density urban area of Hong Kong,
including year in (a) and season in (b). The time information can be extracted from the GSV metafile as described in Section 2.2.1 and shows that
77.7% of the GSV images used in this study were updated and collected during the winter season from December 2016 to January 2017. Some GSV
images haven't been updated, which may be due to uncontrolled factors (weather, road closures, etc.) that prevent Google cars from operating [65].
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Fig. A.2. Spatial distribution of the acquisition time, including year in (a) and season in (b), of the GSV images this study collected in the high-density urban area of Hong Kong.
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